Climate Influences Male-Female Balance

For many reptile and fish species, temperature during egg incubation determines whether hatchlings are male or female. In the northern part of Australia’s Great Barrier Reef, scientists have discovered that 99 percent of immature green turtles hatched in warming sands are female, raising concerns about successful reproduction in the future.

U.S. Forest Service scientists have become increasingly interested in a similar idea: the connection between climate and its effects on the male-female balance in trees.

In a recent study, USFS Southern Research Station (SRS) and Alabama A&M University researchers found that temperature changes may be related to a shift in the density of longleaf pine pollen. Their findings have implications for cone crops, seed production, and future long-term sustainability.

“Abundant evidence demonstrates that climate change affects plants in multiple ways, but some new studies have indicated that these effects could emerge in surprising ways,” says Qinfeng Guo, a research ecologist with the SRS Eastern Forest Environmental Threat Assessment Center.

Longleaf pine is monoecious, meaning that individual trees have male catkins and female cones. Male catkins produce large amounts of pollen that is carried by wind to fertilize the immature female cones, or conelets. Fertilized conelets eventually produce seeds.

Similar to sex ratio shifts in Australia’s green turtles, male pollen shifts pose challenges for natural regeneration in present and future generations of longleaf pine.

Read full story…


Similar Posts: